Sains Malaysiana 52(10)(2023): 2907-2918

http://doi.org/10.17576/jsm-2023-5210-13

 

Characterization, Antibacterial and Toxicity Evaluation of Biosynthesized Zinc Oxide Nanoparticles utilizing Eleuthrine bulbosa Bulb Extract

(Pencirian, Penilaian Antibakteria dan Ketoksikan bagi Zarah Nano Zink Oksida Biosintesis menggunakan Ekstrak Bebawang Eleuthrine bulbosa)

 

NORAZALINA SAAD*, CHE AZURAHANIM CHE ABDULLAH, NURUL ATHIKAH ADILA ZAINAL & EMMELLIE LAURA ALBERT


Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

Diserahkan: 2 Mei 2023/Diterima: 15 Oktober 2023

 

Abstract

In the current study, Eleuthrine bulbosa bulb extract was utilized to synthesize zinc oxide nanoparticles (ZnO NPs) in a simple, sustainable, and environmentally friendly manner. The bioactive compounds of E. bulbosa extract were identified by gas chromatography-mass spectrometry (GC-MS). Following synthesis of the ZnO NPs via the green method with E. bulbosa bulb extract as the reducing and capping agent, ZnO NPs were characterized using X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Ultraviolet-Visible Spectroscopy (UV-Vis), and Photoluminescence (PL) further evaluated for antibacterial and cytotoxic activities. GC-MS analysis showed the presence of phytochemical compounds acting as reducing and capping agents. The UV-Vis spectra of ZnO nanoparticles containing E. bulbosaextract showed an optical energy bandgap between 3.12 and 3.89 eV. In addition, XRD showed that the crystalline size of ZnO NPs ranged from 21 to 68 nm with a wurtzite crystal structure. FTIR analysis showed that the plant extract contains identified functional groups including alcohols, phenols, alkene, and flavonoid compounds that influenced the mechanism of bonding with ZnO NPs. Particularly, the peaks of formation of Zn-O stretching vibrations at 470 to 480 cm-1 were successfully shown. In addition, ZnO NPs displayed antibacterial activity, which was greatest against Staphylococcus aureus, and were cytotoxic to MCF-7 and MCF-10A breast cells with IC50 values of 5.540 µg/mL and 15.77 µg/mL, respectively. ZnO NPs were successfully synthesized utilizing a green method, resulting in intriguing biocompatible potential candidates for use in both biomedical and environmental fields due to their eco-friendly synthesis and nontoxic.

 

Keywords: Eleuthrine bulbosa; Staphylococcus aureus; zinc oxide nanoparticles

 

Abstrak

Dalam kajian ini, ekstrak Eleuthrine bulbosa digunakan buat kali pertama untuk mensintesis nanozarah zink oksida (NPs ZnO) dengan cara yang mudah, mampan dan mesra alam. Sebatian bioaktif ekstrak E. bulbosa telah dikenal pasti oleh kromatografi gas-spektrometri jisim (GC-MS). Berikutan sintesis NP ZnO melalui kaedah pengekstrakan hijau E. bulbosa sebagai agen penurunan dan pengekapan, NP ZnO yang disintesis telah dicirikan menggunakan Pembelauan Sinar-X (XRD), Spektroskopi Inframerah Transformasi Fourier (FTIR), Spektroskopi Ultralembayung-Nampak (UV-Vis) dan Photoluminescence (PL) seterusnya dinilai untuk aktiviti antibakteria dan sitotoksik. Analisis GC-MS mendedahkan kehadiran sebatian fitokimia yang bertindak sebagai agen penurunan dan pengekapan. Spektrum UV-Vis nanozarah ZnO yang mengandungi ekstrak E. bulbosa mendedahkan jurang jalur tenaga optik antara 3.12 dan 3.89 eV. Di samping itu, XRD mendedahkan bahawa saiz kristal ZnO NPs antara 21 hingga 68 nm dengan struktur kristal wurtzite. Analisis FTIR menunjukkan bahawa ekstrak tumbuhan mengandungi kumpulan berfungsi termasuk kumpulan alkohol, fenol, alkena dan flavonoid yang dikenal pasti menyumbang kepada mekanisme ikatan dengan NP ZnO. Secara khususnya, puncak pembentukan getaran regangan Zn-O pada 470 hingga 480 cm-1 berjaya dilihat. Di samping itu, NP ZnO menunjukkan aktiviti antibakteria, yang paling besar terhadap Staphylococcus aureus dan sitotoksik kepada sel payudara MCF-7 dan MCF-10A dengan nilai IC50 masing-masing 5.540 µg/mL dan 15.77 µg/mL. NP ZnO berjaya disintesis menggunakan kaedah hijau, menghasilkan nanozarah ZnO berpotensi sebagai bioserasi yang menarik untuk aplikasi bioperubatan dan alam sekitar kerana sintesis mesra alam dan tidak toksik.

 

Kata kunci: Eleuthrine bulbosa; nanozarah zink oksida; Staphylococcus aureus

RUJUKAN

Abomuti, M.A., Danish, E.Y., Firoz, A., Hasan, N. & Malik, M.A. 2021. Green synthesis of zinc oxide nanoparticles using Salvia officinalis leaf extract and their photocatalytic and antifungal activities. Biology 10(11): 1075. https://doi: 10.3390/biology10111075

Agarwal, H., Venkat Kumar, S. & Rajeshkumar, S. 2017. A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Resource-Efficient Technologies 3(4): 406-413. https://doi.org/10.1016/j.reffit.2017.03.002

Agasti, N. & Narender, K. Kaushik. 2018. Synthesis and characterization of stearic acid capped silver nanoparticles: pH-dependent stabilization and colorimetric detection of Hg(II) in water. Advanced Materials Letters 9(1): 53-57. https://doi.org/10.5185/amlett.2018.1756

Ahmad, W. & Kalra, D. 2020. Green synthesis, characterization and anti microbial activities of ZnO nanoparticles using Euphorbia hirta leaf extract. Journal of King Saud University - Science 32(4): 2358-2364. https://doi.org/10.1016/j.jksus.2020.03.014

Altunbek, M., Baysal, A. & Culha, M. 2014. Influence of surface properties of zinc oxide nanoparticles on their cytotoxicity. Colloids and Surfaces 121: 106-113. https://doi.org/10.1016/j.colsurfb.2014.05.034

Anbuvannan, M., Ramesh, M., Viruthagiri, G., Shanmugam, N. & Kannadasan, N. 2015. Anisochilus carnosus leaf extract mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities. Materials Science in Semiconductor Processing 39: 621-628. https://doi.org/10.1016/j.mssp.2015.06.005

Awwad, A.M., Amer, M.W., Salem, N.M. & Abdeen, A.O. 2020. Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using Ailanthus altissima fruit extracts and antibacterial activity. Chemistry International 6(3): 151-159.

Bala, N., Saha, S., Chakraborty, M., Maiti, M., Das, S., Basu, R. & Nandy, P. 2015. Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: Effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Advances 5(7): 4993-5003. https://doi.org/10.1039/c4ra12784f

Balouiri, M., Sadiki, M. & Ibnsouda, S.K. 2016. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis 6(2): 71-79. https://doi.org/10.1016/j.jpha.2015.11.005

Berehu, H.M., Anupriya, S., Khan, M.I., Chakraborty, R., Lavudi, K., Penchalaneni, J., Mohapatra, B., Mishra, A. & Patnaik, S. 2021. Cytotoxic potential of biogenic zinc oxide nanoparticles synthesized from Swertia chirayita leaf extract on colorectal cancer cells. Frontiers in Bioengineering and Biotechnology 9: 788527. https://doi.org/10.3389/fbioe.2021.788527

Chakraborty, U., Bhanjana, G., Adam, J., Mishra, Y.K., Kaur, G., Chaudhary, G.R. & Kaushik, A. 2020. A flower-like ZnO-Ag2O nanocomposite for label and mediator free direct sensing of dinitrotoluene. RSC Advances 10(46): 27764-27774. https://doi.org/10.1039/d0ra02826f

El-Belely, E.F., Farag, M.M.S., Said, H.A., Amin, A.S., Azab, E., Gobouri, A.A. & Fouda, A. 2021. Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using Arthrospira platensis (Class: Cyanophyceae) and evaluation of their biomedical activities. Nanomaterials (Basel) 11(1): 95. https://doi.org/10.3390/nano

Ezealisiji, K.M., Siwe-Noundou, X., Maduelosi, B., Nwachukwu, N. & Krause, R.W.M. 2019. Green synthesis of zinc oxide nanoparticles using Solanum torvum (L) leaf extract and evaluation of the toxicological profile of the ZnO nanoparticles–hydrogel composite in Wistar albino rats. International Nano Letters (9): 99–107. https://doi.org/10.1007/s40089-018-0263-1

Gherbi, B., Laouini, S.E., Meneceur, S., Bouafia, A., Hemmami, H., Tedjani, M.L., Thiripuranathar, G., Barhoum, A. & Menaa, F. 2022. Effect of pH value on the bandgap energy and particles size for biosynthesis of ZnO nanoparticles: Efficiency for photocatalytic adsorption of methyl orange. Sustainability 14(18): 11300.

Hano, C. & Abbasi, B.H. 2022. Plant-based green synthesis of nanoparticles: Production, characterization and applications. Biomolecules 12(1): 1-9. https://doi.org/10.3390/biom12010031

Imade, E.E., Ajiboye, T.O., Fadiji, A.E., Onwudiwe, D.C. & Babalola, O.O. 2022. Green synthesis of zinc oxide nanoparticles using plantain peel extracts and the evaluation of their antibacterial activity. Scientific African 16: e01152. https://doi.org/10.1016/j.sciaf.2022.e01152

Insanu, M., Kusmardiyani, S. & Hartati, R. 2014. Recent studies on phytochemicals and pharmacological effects of Eleutherine Americana Merr. Procedia Chemistry 13: 221-228. https://doi.org/10.1016/j.proche.2014.12.032

Jain, A.S., Pawar, P.S., Sarkar, A., Junnuthula, V. & Dyawanapelly, S. 2021. Bionanofactories for green synthesis of silver nanoparticles: Toward antimicrobial applications. International Journal of Molecular Sciences 22(21): 11993. https://doi.org/10.3390/ijms222111993

Kamarudin, A.A., Mohd. Esa, N., Saad, N., Sayuti, N.H. & Nor, N.A. 2020. Heat assisted extraction of phenolic compounds from Eleutherine bulbosa (Mill.) bulb and its bioactive profiles using response surface methodology. Industrial Crops and Products 144: 112064. https://doi.org/10.1016/j.indcrop.2019.112064

Khan, M., Ware, P. & Shimpi, N. 2021. Synthesis of ZnO nanoparticles using peels of Passiflora foetida and study of its activity as an efficient catalyst for the degradation of hazardous organic dye. SN Applied Sciences 3(5): 1-17. https://doi.org/10.1007/s42452-021-04436-4

Kulkarni, S.A., Sawadh, P.S., Palei, P.K. & Kokate, K.K. 2014. Effect of synthesis route on the structural, optical and magnetic properties of Fe3O4 nanoparticles. Ceramics International 40(1 PART B): 1945-1949. https://doi.org/10.1016/j.ceramint.2013.07.103

Kusuma, I.W., Arung, E.T., Rosamah, E., Purwatiningsih, S., Kuspradini, H., Syafrizal, Astuti, J., Kim, Y.U. & Shimizu, K. 2010. Antidermatophyte and antimelanogenesis compound from Eleutherine americana grown in Indonesia. Journal of Natural Medicines 64(2): 223-226. https://doi.org/10.1007/s11418-010-0396-7

Markevich, I., Stara, T., Khomenkova, L., Kushnirenko, V. & Borkovska, L. 2016. Photoluminescence engineering in polycrystalline ZnO and ZnO-based compounds. AIMS Materials Science 3(2): 508-524. https://doi.org/10.3934/matersci.2016.2.508

Mekprasart, W., Ravuri, B.R., Yimnirun, R. & Pecharapa, W. 2020. Photoluminescence and X-ray photoelectron spectroscopic study of milled-ZnO material prepared by high energy ball milling technique. ScienceAsia 46 S(1): 91-96. https://doi.org/10.2306/SCIENCEASIA1513-1874.2020.S013

Melkamu, W.W. & Bitew, L.T. 2021. Green synthesis of silver nanoparticles using Hagenia abyssinica (Bruce) J.F. Gmel plant leaf extract and their antibacterial and anti-oxidant activities. Heliyon 7(11): e08459. https://doi.org/10.1016/j.heliyon.2021.e08459

Munajad, A., Subroto, C. & Suwarno. 2018. Fourier transform infrared (FTIR) spectroscopy analysis of transformer paper in mineral oil-paper composite insulation under accelerated thermal aging. Energies 11(2): 364. https://doi.org/10.3390/en11020364

Namvar, F., Mohamad, R., Baharara, J., Zafar-Balanejad, S., Fargahi, F. & Rahman, H.S. 2013. Antioxidant, antiproliferative, and antiangiogenesis effects of polyphenol-rich seaweed (Sargassum muticum). BioMed Research International 2013: 604787. https://doi.org/10.1155/2013/604787

Peng, X., Palma, S., Fisher, N.S. & Wong, S.S. 2011. Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquatic Toxicology 102(3-4): 186-196. https://doi.org/10.1016/j.aquatox.2011.01.014

Pillai, A.M., Sivasankarapillai, V.S., Rahdar, A., Joseph, J., Sadeghfar, F., Anuf, A.R., Rajesh, K. & Kyzas, G.Z. 2020. Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. Journal of Molecular Structure 1211: 128107. https://doi.org/10.1016/j.molstruc.2020.128107

Ribut, S.H., Abdullah, C.A.C., Mustafa, M., Yusoff, M.Z.Y. & Azman, S.N.A. 2018. Influence of pH variations on zinc oxide nanoparticles and their antibacterial activity. Materials Research Express 6(2): 025016. http://doi.org/10.1088/2053-1591/aaecbc

Roy, S. & Rhim, J.W. 2019. Carrageenan-based antimicrobial bionanocomposite films incorporated with ZnO nanoparticles stabilized by melanin. Food Hydrocolloids 90: 500-507. https://doi.org/10.1016/j.foodhyd.2018.12.056

Selim, Y.A., Azb, M.A., Ragab, I. & H.M. Abd El-Azim, M. 2020. Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Scientific Reports 10(1): 1-9. https://doi.org/10.1038/s41598-020-60541-1

Siddiqi, K.S., ur Rahman, A., Tajuddin, & Husen, A. 2018. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Research Letters 13(1): 141. https://doi.org/10.1186/s11671-018-2532-3

Soltanian, S., Sheikhbahaei, M., Mohamadi, N., Pabarja, A., Abadi, M.F.S. & Tahroudi, M.H.M. 2021. Biosynthesis of zinc oxide nanoparticles using Hertia intermedia and evaluation of its cytotoxic and antimicrobial activities. BioNanoScience 11(2): 245-255. https://doi.org/10.1007/s12668-020-00816-z

Soto-Robles, C.A., Luque, P.A., Gómez-Gutiérrez, C.M., Nava, O., Vilchis-Nestor, A.R., Lugo-Medina, E., Ranjithkumar, R. & Castro-Beltrán, A. 2019. Study on the effect of the concentration of Hibiscus sabdariffa extract on the green synthesis of ZnO nanoparticles. Results in Physics 15: 102807. https://doi.org/10.1016/j.rinp.2019.102807

Theophil Anand, G., Renuka, D., Ramesh, R., Anandaraj, L., John Sundaram, S., Ramalingam, G., Magdalane, C.M., Bashir, A.K.H., Maaza, M. & Kaviyarasu, K. 2019. Green synthesis of ZnO nanoparticle using Prunus dulcis (Almond Gum) for antimicrobial and supercapacitor applications. Surfaces and Interfaces 17: 100376. https://doi.org/10.1016/j.surfin.2019.100376

van, T.A., Joubert, A.M. & Cromarty, A.D. 2015. Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res Notes 8: 47. https://bmcresnotes.biomedcentral.com/articles/10.1186/ s13104-015-1000-8

Vijayakumar, S., Mahadevan, S., Arulmozhi, P., Sriram, S. & Praseetha, P.K. 2018. Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: Characterization and antimicrobial analysis. Materials Science in Semiconductor Processing 82: 39-45. https://doi.org/10.1016/j.mssp.2018.03.017

Wicaksono, I., Runadi, D. & Firmansyah, I. 2018. Antibacterial activity test of dayak onions (Eleutherine palmifolia L. Merr.) ethanolic extract against Shigella dysenteriae ATCC 13313. National Journal of Physiology, Pharmacy and Pharmacology 8(5): 741-744. https://doi.org/10.5455/njppp.2018.8.1248625012018

Zhen, L., Zhang P., Andrea, P., Tobias, K. & Dietrich, A.V. 2020. Influence of core size and capping ligand of gold nanoparticles on the desorption/ionization efficiency of small biomolecules in AP-SALDI-MS. Analytical Science Advances (1): 210–220. https://doi.org/10.1002/ansa.202000002

 

*Pengarang untuk surat-menyurat; email: norazalina@upm.edu.my

 

 

 

 

 

 

 

 

 

 

   

sebelumnya