Sains Malaysiana 52(10)(2023): 2907-2918
http://doi.org/10.17576/jsm-2023-5210-13
Characterization, Antibacterial and
Toxicity Evaluation of Biosynthesized Zinc Oxide Nanoparticles utilizing Eleuthrine bulbosa Bulb Extract
(Pencirian, Penilaian Antibakteria dan Ketoksikan bagi Zarah Nano Zink Oksida Biosintesis menggunakan Ekstrak Bebawang Eleuthrine bulbosa)
NORAZALINA SAAD*, CHE AZURAHANIM CHE ABDULLAH,
NURUL ATHIKAH ADILA ZAINAL & EMMELLIE LAURA ALBERT
Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Diserahkan: 2 Mei 2023/Diterima: 15 Oktober
2023
Abstract
In
the current study, Eleuthrine bulbosa bulb extract was utilized to synthesize zinc
oxide nanoparticles (ZnO NPs) in a simple,
sustainable, and environmentally friendly manner. The bioactive compounds of E. bulbosa extract were identified by gas
chromatography-mass spectrometry (GC-MS). Following synthesis of the ZnO NPs via the green method with E. bulbosa bulb extract as the reducing and capping agent, ZnO NPs were characterized using X-Ray Diffraction (XRD),
Fourier Transform Infrared Spectroscopy (FTIR), Ultraviolet-Visible
Spectroscopy (UV-Vis), and Photoluminescence (PL) further evaluated for
antibacterial and cytotoxic activities. GC-MS analysis showed the presence of
phytochemical compounds acting as reducing and capping agents. The UV-Vis
spectra of ZnO nanoparticles containing E. bulbosaextract showed an optical energy bandgap
between 3.12 and 3.89 eV. In addition, XRD showed that the crystalline size of ZnO NPs ranged from 21 to 68 nm with a wurtzite crystal structure. FTIR analysis showed that the plant extract contains
identified functional groups including alcohols,
phenols, alkene, and flavonoid compounds that influenced the mechanism of
bonding with ZnO NPs. Particularly, the peaks
of formation of Zn-O stretching vibrations at 470 to 480 cm-1 were
successfully shown. In addition, ZnO NPs displayed
antibacterial activity, which was greatest against Staphylococcus aureus,
and were cytotoxic to MCF-7 and MCF-10A breast cells with IC50 values of 5.540 µg/mL and 15.77 µg/mL, respectively. ZnO NPs were
successfully synthesized utilizing a green method, resulting in intriguing
biocompatible potential candidates for use in both biomedical and environmental
fields due to their eco-friendly synthesis and nontoxic.
Keywords: Eleuthrine bulbosa;
Staphylococcus aureus; zinc oxide nanoparticles
Abstrak
Dalam kajian ini, ekstrak Eleuthrine bulbosa digunakan buat kali pertama untuk mensintesis nanozarah zink oksida (NPs ZnO) dengan cara yang mudah, mampan dan mesra alam. Sebatian bioaktif ekstrak E. bulbosa telah dikenal pasti oleh kromatografi gas-spektrometri jisim (GC-MS). Berikutan sintesis NP ZnO melalui kaedah pengekstrakan hijau E. bulbosa sebagai agen penurunan dan pengekapan, NP ZnO yang disintesis telah dicirikan menggunakan Pembelauan Sinar-X (XRD), Spektroskopi Inframerah Transformasi Fourier
(FTIR), Spektroskopi Ultralembayung-Nampak
(UV-Vis) dan Photoluminescence (PL) seterusnya dinilai untuk aktiviti antibakteria dan sitotoksik. Analisis GC-MS mendedahkan kehadiran sebatian fitokimia yang bertindak sebagai agen penurunan dan pengekapan. Spektrum UV-Vis nanozarah ZnO yang mengandungi ekstrak E. bulbosa mendedahkan jurang jalur tenaga optik antara 3.12 dan 3.89 eV. Di samping itu, XRD mendedahkan bahawa saiz kristal ZnO NPs antara 21 hingga 68 nm dengan struktur kristal wurtzite. Analisis FTIR menunjukkan bahawa ekstrak tumbuhan mengandungi kumpulan berfungsi termasuk kumpulan alkohol, fenol, alkena dan flavonoid yang dikenal pasti menyumbang kepada mekanisme ikatan dengan NP ZnO. Secara khususnya, puncak pembentukan getaran regangan Zn-O pada 470 hingga 480 cm-1 berjaya dilihat. Di samping itu, NP ZnO menunjukkan aktiviti antibakteria, yang
paling besar terhadap Staphylococcus aureus dan sitotoksik kepada sel payudara MCF-7 dan MCF-10A dengan nilai IC50 masing-masing 5.540 µg/mL dan 15.77 µg/mL. NP ZnO berjaya disintesis menggunakan kaedah hijau, menghasilkan nanozarah ZnO berpotensi sebagai bioserasi yang menarik untuk aplikasi bioperubatan dan alam sekitar kerana sintesis mesra alam dan tidak toksik.
Kata kunci: Eleuthrine bulbosa; nanozarah zink oksida; Staphylococcus aureus
RUJUKAN
Abomuti, M.A., Danish, E.Y., Firoz, A., Hasan, N. & Malik, M.A. 2021. Green
synthesis of zinc oxide nanoparticles using Salvia officinalis leaf extract and their photocatalytic and
antifungal activities. Biology 10(11): 1075. https://doi:
10.3390/biology10111075
Agarwal, H., Venkat Kumar, S. & Rajeshkumar,
S. 2017. A review on green synthesis of zinc oxide nanoparticles – An
eco-friendly approach. Resource-Efficient Technologies 3(4): 406-413. https://doi.org/10.1016/j.reffit.2017.03.002
Agasti, N. & Narender, K. Kaushik. 2018. Synthesis and characterization of stearic acid capped silver nanoparticles: pH-dependent stabilization and colorimetric detection of Hg(II) in water. Advanced Materials Letters 9(1): 53-57. https://doi.org/10.5185/amlett.2018.1756
Ahmad, W.
& Kalra, D. 2020. Green synthesis,
characterization and anti microbial activities of ZnO nanoparticles using Euphorbia hirta leaf extract. Journal of King Saud University - Science 32(4):
2358-2364. https://doi.org/10.1016/j.jksus.2020.03.014
Altunbek, M., Baysal, A. & Culha, M. 2014. Influence of surface properties of zinc
oxide nanoparticles on their cytotoxicity. Colloids and Surfaces 121:
106-113. https://doi.org/10.1016/j.colsurfb.2014.05.034
Anbuvannan, M., Ramesh, M., Viruthagiri, G., Shanmugam, N. & Kannadasan,
N. 2015. Anisochilus carnosus leaf extract mediated synthesis of zinc oxide nanoparticles for antibacterial
and photocatalytic activities. Materials Science in Semiconductor Processing 39: 621-628. https://doi.org/10.1016/j.mssp.2015.06.005
Awwad, A.M., Amer, M.W., Salem, N.M.
& Abdeen, A.O. 2020. Green synthesis of zinc
oxide nanoparticles (ZnO-NPs) using Ailanthus altissima fruit extracts and antibacterial activity. Chemistry
International 6(3): 151-159.
Bala, N., Saha, S., Chakraborty, M., Maiti, M., Das, S., Basu, R.
& Nandy, P. 2015. Green synthesis of zinc oxide
nanoparticles using Hibiscus subdariffa leaf
extract: Effect of temperature on synthesis, anti-bacterial activity and
anti-diabetic activity. RSC Advances 5(7): 4993-5003.
https://doi.org/10.1039/c4ra12784f
Balouiri, M., Sadiki, M. & Ibnsouda,
S.K. 2016. Methods for in vitro evaluating antimicrobial activity: A
review. Journal of Pharmaceutical Analysis 6(2): 71-79.
https://doi.org/10.1016/j.jpha.2015.11.005
Berehu, H.M., Anupriya, S., Khan, M.I.,
Chakraborty, R., Lavudi, K., Penchalaneni,
J., Mohapatra, B., Mishra, A. & Patnaik, S. 2021.
Cytotoxic potential of biogenic zinc oxide nanoparticles synthesized from Swertia chirayita leaf extract on colorectal cancer cells. Frontiers in Bioengineering and
Biotechnology 9: 788527. https://doi.org/10.3389/fbioe.2021.788527
Chakraborty,
U., Bhanjana, G., Adam, J., Mishra, Y.K., Kaur, G.,
Chaudhary, G.R. & Kaushik, A. 2020. A flower-like ZnO-Ag2O nanocomposite
for label and mediator free direct sensing of dinitrotoluene. RSC Advances 10(46): 27764-27774. https://doi.org/10.1039/d0ra02826f
El-Belely, E.F., Farag, M.M.S.,
Said, H.A., Amin, A.S., Azab, E., Gobouri,
A.A. & Fouda, A. 2021. Green synthesis of zinc
oxide nanoparticles (ZnO-NPs) using Arthrospira platensis (Class: Cyanophyceae) and evaluation of their biomedical
activities. Nanomaterials (Basel) 11(1): 95.
https://doi.org/10.3390/nano
Ezealisiji, K.M., Siwe-Noundou, X., Maduelosi, B., Nwachukwu, N. & Krause, R.W.M. 2019. Green synthesis of zinc oxide nanoparticles using Solanum torvum (L) leaf extract and evaluation of the toxicological profile of the ZnO nanoparticles–hydrogel composite in Wistar albino rats. International Nano Letters (9): 99–107. https://doi.org/10.1007/s40089-018-0263-1
Gherbi, B., Laouini, S.E., Meneceur, S., Bouafia, A., Hemmami, H., Tedjani, M.L., Thiripuranathar, G., Barhoum, A.
& Menaa, F. 2022. Effect of pH value on the
bandgap energy and particles size for biosynthesis of ZnO nanoparticles: Efficiency for photocatalytic adsorption of methyl orange. Sustainability 14(18): 11300.
Hano, C. & Abbasi, B.H. 2022.
Plant-based green synthesis of nanoparticles: Production, characterization and
applications. Biomolecules 12(1): 1-9.
https://doi.org/10.3390/biom12010031
Imade, E.E., Ajiboye, T.O., Fadiji, A.E., Onwudiwe, D.C.
& Babalola, O.O. 2022. Green synthesis of zinc
oxide nanoparticles using plantain peel extracts and the evaluation of their
antibacterial activity. Scientific African 16: e01152.
https://doi.org/10.1016/j.sciaf.2022.e01152
Insanu, M., Kusmardiyani, S. & Hartati, R. 2014. Recent studies on phytochemicals and
pharmacological effects of Eleutherine Americana Merr. Procedia Chemistry 13:
221-228. https://doi.org/10.1016/j.proche.2014.12.032
Jain, A.S., Pawar, P.S., Sarkar, A., Junnuthula,
V. & Dyawanapelly, S. 2021. Bionanofactories for green synthesis of silver nanoparticles: Toward antimicrobial applications. International Journal of Molecular Sciences 22(21): 11993.
https://doi.org/10.3390/ijms222111993
Kamarudin, A.A., Mohd. Esa,
N., Saad, N., Sayuti, N.H.
& Nor, N.A. 2020. Heat assisted extraction of phenolic compounds from Eleutherine bulbosa (Mill.) bulb and its bioactive profiles using response surface methodology. Industrial
Crops and Products 144: 112064. https://doi.org/10.1016/j.indcrop.2019.112064
Khan, M.,
Ware, P. & Shimpi, N. 2021. Synthesis of ZnO nanoparticles using peels of Passiflora foetida and study of its activity as an efficient
catalyst for the degradation of hazardous organic dye. SN Applied Sciences 3(5): 1-17. https://doi.org/10.1007/s42452-021-04436-4
Kulkarni,
S.A., Sawadh, P.S., Palei,
P.K. & Kokate, K.K. 2014. Effect of synthesis
route on the structural, optical and magnetic properties of Fe3O4 nanoparticles. Ceramics International 40(1 PART B): 1945-1949. https://doi.org/10.1016/j.ceramint.2013.07.103
Kusuma, I.W., Arung, E.T., Rosamah, E., Purwatiningsih, S., Kuspradini, H., Syafrizal, Astuti, J., Kim, Y.U. & Shimizu, K. 2010. Antidermatophyte and antimelanogenesis compound from Eleutherine americana grown in Indonesia. Journal of Natural
Medicines 64(2): 223-226. https://doi.org/10.1007/s11418-010-0396-7
Markevich, I., Stara, T., Khomenkova, L., Kushnirenko, V.
& Borkovska, L. 2016. Photoluminescence
engineering in polycrystalline ZnO and ZnO-based compounds. AIMS Materials Science 3(2):
508-524. https://doi.org/10.3934/matersci.2016.2.508
Mekprasart, W., Ravuri, B.R., Yimnirun, R. & Pecharapa, W.
2020. Photoluminescence and X-ray photoelectron spectroscopic study of milled-ZnO material prepared by high energy ball milling
technique. ScienceAsia 46 S(1):
91-96. https://doi.org/10.2306/SCIENCEASIA1513-1874.2020.S013
Melkamu, W.W. & Bitew, L.T. 2021.
Green synthesis of silver nanoparticles using Hagenia abyssinica (Bruce) J.F. Gmel plant leaf extract and their antibacterial and
anti-oxidant activities. Heliyon 7(11):
e08459. https://doi.org/10.1016/j.heliyon.2021.e08459
Munajad, A., Subroto, C. & Suwarno. 2018. Fourier transform infrared (FTIR)
spectroscopy analysis of transformer paper in mineral oil-paper composite
insulation under accelerated thermal aging. Energies 11(2): 364.
https://doi.org/10.3390/en11020364
Namvar, F., Mohamad, R., Baharara, J.,
Zafar-Balanejad, S., Fargahi,
F. & Rahman, H.S. 2013. Antioxidant, antiproliferative,
and antiangiogenesis effects of polyphenol-rich
seaweed (Sargassum muticum). BioMed Research International 2013:
604787. https://doi.org/10.1155/2013/604787
Peng, X.,
Palma, S., Fisher, N.S. & Wong, S.S. 2011. Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquatic
Toxicology 102(3-4): 186-196. https://doi.org/10.1016/j.aquatox.2011.01.014
Pillai,
A.M., Sivasankarapillai, V.S., Rahdar,
A., Joseph, J., Sadeghfar, F., Anuf,
A.R., Rajesh, K. & Kyzas, G.Z. 2020. Green
synthesis and characterization of zinc oxide nanoparticles with antibacterial
and antifungal activity. Journal of Molecular Structure 1211: 128107.
https://doi.org/10.1016/j.molstruc.2020.128107
Ribut, S.H., Abdullah, C.A.C., Mustafa, M., Yusoff,
M.Z.Y. & Azman, S.N.A. 2018. Influence of pH variations
on zinc oxide nanoparticles and their antibacterial activity. Materials
Research Express 6(2): 025016. http://doi.org/10.1088/2053-1591/aaecbc
Roy, S.
& Rhim, J.W. 2019. Carrageenan-based
antimicrobial bionanocomposite films incorporated
with ZnO nanoparticles stabilized by melanin. Food
Hydrocolloids 90: 500-507. https://doi.org/10.1016/j.foodhyd.2018.12.056
Selim, Y.A., Azb, M.A., Ragab, I. & H.M. Abd El-Azim,
M. 2020. Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Scientific Reports 10(1): 1-9.
https://doi.org/10.1038/s41598-020-60541-1
Siddiqi,
K.S., ur Rahman, A., Tajuddin,
& Husen, A. 2018. Properties of zinc oxide
nanoparticles and their activity against microbes. Nanoscale Research
Letters 13(1): 141. https://doi.org/10.1186/s11671-018-2532-3
Soltanian, S., Sheikhbahaei, M., Mohamadi, N., Pabarja, A., Abadi, M.F.S. & Tahroudi,
M.H.M. 2021. Biosynthesis of zinc oxide nanoparticles using Hertia intermedia and evaluation of its cytotoxic and antimicrobial activities. BioNanoScience 11(2): 245-255.
https://doi.org/10.1007/s12668-020-00816-z
Soto-Robles,
C.A., Luque, P.A., Gómez-Gutiérrez, C.M., Nava, O., Vilchis-Nestor, A.R., Lugo-Medina, E., Ranjithkumar,
R. & Castro-Beltrán, A. 2019. Study on the effect
of the concentration of Hibiscus sabdariffa extract on the green
synthesis of ZnO nanoparticles. Results in Physics 15: 102807. https://doi.org/10.1016/j.rinp.2019.102807
Theophil Anand, G., Renuka,
D., Ramesh, R., Anandaraj, L., John Sundaram, S., Ramalingam, G., Magdalane, C.M., Bashir, A.K.H., Maaza,
M. & Kaviyarasu, K. 2019. Green synthesis of ZnO nanoparticle using Prunus dulcis (Almond Gum) for antimicrobial and supercapacitor applications. Surfaces and Interfaces 17: 100376. https://doi.org/10.1016/j.surfin.2019.100376
van, T.A., Joubert, A.M. & Cromarty, A.D. 2015. Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res Notes 8: 47. https://bmcresnotes.biomedcentral.com/articles/10.1186/ s13104-015-1000-8
Vijayakumar, S., Mahadevan, S., Arulmozhi, P., Sriram, S. & Praseetha, P.K. 2018. Green synthesis of zinc oxide
nanoparticles using Atalantia monophylla leaf extracts: Characterization and
antimicrobial analysis. Materials Science in Semiconductor Processing 82: 39-45. https://doi.org/10.1016/j.mssp.2018.03.017
Wicaksono, I., Runadi, D. & Firmansyah, I. 2018. Antibacterial activity test of dayak onions (Eleutherine palmifolia L. Merr.) ethanolic extract against Shigella dysenteriae ATCC 13313. National Journal of
Physiology, Pharmacy and Pharmacology 8(5): 741-744.
https://doi.org/10.5455/njppp.2018.8.1248625012018
Zhen, L., Zhang P., Andrea, P., Tobias, K. & Dietrich, A.V. 2020. Influence of core size and capping ligand of gold nanoparticles on the desorption/ionization efficiency of small biomolecules in AP-SALDI-MS. Analytical Science Advances (1): 210–220. https://doi.org/10.1002/ansa.202000002
*Pengarang untuk surat-menyurat; email: norazalina@upm.edu.my
|